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The complementary subset of asymptotes is given by tan(¢, +
¥, ) = 00, or, developing the tangent and using (A2) and (A3)

o= (22 )L

The left-hand member of (A6) is the product of two monotonous
functions but is not monotonous. However, a careful examination
of G(u) shows that between 0 and the mth asymptote u), of
G(u), the number of solutions of (A6) is equal to m.

Now, the values of u/, are analytic and given by

Uh1=(2q+1)%

(A6)

(A7)

vhy=(2¢'+1)7. (A8)

Finally, in an interval (0, u,,), we are able to determine the
number m of non-analytic asymptotes of F(u), thus to derive the
total number » = m + m’ of asymptotes, m” being the number of
analytic asymptotes given by (A5) between 0 and u/,.

To compute the successive zeros of F(u), we calculate F(u) at
a certain number P of equidistant points between 0 and u;,. We
detect the approximate positions of the zeros (when the sign of
F(u) goes from a negative to a positive value) and of the
asymptotes (the opposite). The number n’ of computed asymp-
totesis compared to n=m + m’. If n’<n, the computation is
started again, with 2 P points, then 4 P points, etc, as long as »n’ is
not equal to n. So, we know that all the asymptotes have been
detected, and it suffices to verify that a zero of F(u) has well
been found between two consecutive asymptotes to be sure that
no zero has been forgotten until the last asymptote. A second
step of the computation is to enhance the precision on the zeros
by using the method of the secant, starting from the approximate
values.

As regards the numerical implementation, this very effective
systematic method appears to be necessary since the numerical
exploitation has shown that F(u) can have zeros and asymptotes
very close to each other. Therefore, a rough search for the zeros
often misses some of them, which is catastrophic for the final
result.
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Moment-Method Solutions and SAR Calculations for
Inhomogeneous Models of Man with Large
Number of Cells
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Abstract — This paper describes an iterative band approximation method
(BAM) that is useful for solution of large matrix equations where the
elements of the matrix decrease in magnitude with increasing distance from
the diagonal. The method involves the inversion of a band about the
diagonal which is used to obtain a first estimate of the solution. This
estimate, along with the remaining elements in the matrix above and below
the band, is used to iterate to the final solution. Due to the substantial
reduction in the size of the matrix which is actually inverted, the method
has been applied to the solution of full complex matrix equations involving
up to 1698 unknowns. BAM is used to obtain distributions of EM energy
absorption for man models with 180-1132 cells.

I. INTRODUCTION

To understand the biological effects of electromagnetic fields,
it is necessary to quantify the whole-body absorption and its
distribution for the various irradiation conditions. Moment-
method solutions with inhomogeneous man models have been
used to obtain the distributions of time-rates of absorbed energy
(specific absorption rates (SAR’s)) for free-space irradiation
[1]-[3], for a human in contact with and slightly removed from a
ground plane and in the presence of metallic corner reflectors [4].
Combined with the plane-wave-spectrum approach to prescribe
the incident fields, moment-method solutions have also been used
to obtain SAR distributions for leakage-type (uncoupled) near-
field exposure conditions such as those from RF sealers, etc. [5].
In fact, in spite of the claims made for other numerical ap-
proaches such as finite-element methods, etc., the moment-method
is the only successful procedure used at the present time to obtain
SAR distributions for inhomogeneous models of biological bod-
ies.

Most of our work has used a block model of man using 180
cubical cells of various sizes arranged for a best fit of the contour
on diagrams of the 50th percentile standard man [3]. With
considerably larger computation times, we have also described
solutions in which a total of 340 cells were used to provide a finer
detail of energy deposition in the head and neck allowing us to
pinpoint the frequency region for head resonance [6]. The proce-
dures used in the past have required the use of full complex
matrices 3N X3N in dimension for a model with N cells. Effi-
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cient procedures are consequently needed for inversion of such
large matrices so that a larger number of cells may be used for a
more accurate calculation of energy distribution, without a sub-
stantial increase in the computation cost.

This paper describes an efficient algorithm called the band-
approximation method (BAM) for inversion of large matrices and
its use for man models with large number of cells up to 1132.
This method was originally suggested by Ferguson, et /. [11] but
was implemented only for relatively small problems involving 100
unknowns or less.

II. THE BAND-APPROXIMATION METHOD

For this method to succeed it is essential that the matrix
elements show a band-like structure around the diagonal, Due to
the properties of the Green’s function, the matrix 4 in the
moment-method equation [1}-[3] can be made to have a rapid
decrease in the magnitude of the elements with increasing dis-
tance from the diagonal by a properly ordered numbering of the
cells in the model.

The moment-method matrix equation to be solved has the form

A-E=FE 1)
where the vectors E and E' are the values of total electric field
and incident electric field within the cells of the model and A4 is
the matrix involving the derivatives of the Green’s function and
the complex dielectric properties of the individual cells.

Let B be a banded section about the diagonal of matrix A. Also
let &= A — B be the rest of the matrix 4. We can rewrite Q) as
B-E+C-E=F 2)

or

E=(B“EY)—(B"'C)-E

Iterations for BAM are defined by

(3)

E . =a(BHEN+[(1- ) -a(B-C)-E  (9)
where T is the unit matrix and a is the relaxation factor.

Smce matrix A is diagonally dominant, the LU decomposition!

B does not require pivoting and so preserves bandwidth.

Hence in implementing BAM, the banded portion B may be
overwritten with its LU factors. This is increasingly important as
the matrix becomes larger since it dramatically reduces the com-
puter memory requirements.

Let €, define the error E E of the Jjth iteration from the
exact solutlon E, then ¢ 41 can be written as

§u=[(-a) -a(B0)] ¢ €)

For a<1, the convergence of the iterations is assured if all
eigenvalues of (ﬁ’l-é') have magnitudes less than unity. The
rapid decrease in magnitude of the elements with increasing
distance from the diagonal guarantees that this condition is
satisfied, and hence convergence will invariably occur for a
sufficiently large value of bandwidth.

III. TestinGg WITH A 180-CELL MODEL OF MAN

A series of tests of BAM has been made using the 130-cell
block model of man [3)]. Since one plane of symmetry was used in
the model, the matrix was 270 X270 in dimension. Bounds on the
limiting bandwidth for convergence are shown in Fig. 1. Note

LU decomposition is the factorization of a matrix into a lower triangular
matrix and an upper triangular matrix [7].
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Fig. 1. Bandwidth for convergence of iterations with a 180-cell block model

of man. No relaxation was used.

that the limiting bandwidth is an increasing function of frequency.

"This is attributed to an observed decrease in rolloff of matrix

clement magnitudes with distance from the diagonal on account
of increased dominance of radiation (1/R) terms at higher fre-
quencies. No relaxation was required for solution of the 180-cell
man model, but we found that solution of man models containing
more than approximately 400 cells required underrelaxation. Total
computer time for the solutions was about 1/3 that of a nonitera-
tive solution at 915 MHz, and considerably less at lower frequen-
cies due to decreased bandwidth.

IV. APPLICATIONS TO MAN MODELS WITH LARGER
NUMBER OF CELLS

In addition to finer discretization of the biological bodies or
parts thereof, the models with larger numbers of cells also permit
a more accurate geometric representation of these bodies. The
BAM has been used to obtain SAR distributions for the follow-
ing man models.

1) An 1132-cell homogeneous model of man with dielectric
properties corresponding to 2 /3 muscle [8]. For this model, each
of the cubical blocks in our 180-cell model [3] is divided into
eight cubical blocks. Some of the ceils were then deleted or put in
slightly different locations in order to improve the physical
conformity of the model to a human body.

2) A 626-cell inhomogeneous model of man shown in Fig. 2.
This model is similar to the 1132-cell model except that some-
what coarser cells .are used in the torso and the arms. The
volume-averaged complex permittivities for the individual cells
are obtained from the anatomical data [9] on the composition of
tissues (fat, muscle, skin, bone, etc.) in the respective regions and
the known frequency-dependent permittivities [8] for the various
constituents.

3) Intermediate models, where individual regions of the body
were finely discretized leaving the rest of the body discretized as
in the 180-cell model [3].

Pulse-function basis and delta functions for testing were used
in applying the method of moments for solution of the electric-
field integral equation. Since the solutions were obtained with a
relatively small main frame computer (Digital Systems DEC-20),
it was necessary to use only a small fraction of the center band in
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Fig. 2. Front view of a 626-cell model of man.

TABLE I
SoME TypicAL CoMPUTATION TIMES ON THE DEC-20 FOR THE
VARIOUS MAN MODELS

Computation
Number of Frequency Half- Number of Time
Cells MHz Bandwidth Iterations h, min
180 27.12 50 20 0, 5
180 350.00 100 20 0, 7
340 27.12 100 20 0, 22
340 350.00 180 20 0, 33
580 27.12 250 30 1, 50
626 27.12 250 15 1, 21
626 77.00 250 38 2, 31
760 27.12 300 40 5 9
1132 27.12 350 40 11, 36

“core” memory dt any one time. Substantial time was therefore
spent in swapping data back and forth from the disk.

A representative set of computation times for the various
models is given in Table L It is recognized that use of larger
computers will allow a larger fraction of the data in the memory
with a drastic reduction in the computation time. Almost three-
fourths of the computer time necessary for the 1132-cell solution
was expended in data acquisition from the disk.

V. RESULTS

The highlights of the SAR’s calculated for the various models
are given in Table II. Some of the salient features of the results
may be summarized as follows.

1) The calculated values of the whole-body-averaged SAR
increases with the number of cells that are used. This result is
ascribed to the fact that an insufficient number of cells have been
used to represent the actual field variations within the body. A
similar effect was previously observed [10] for calculations of
absorbed energy by a cubical body of saline. Asymptotically
converging solutions were obtained with reasonable estimates
obtained for cell sizes A such that A /A < 0.1 (A, is the wave-
length in the material). Since such small cell sizes will imply man

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-31, No. 10, ocT. 1983

TABLE 11
WHOLE BODY AVERAGE AND NORMALIZED REGIONAL SAR’S FOR
THE VARIOUS MAN MODELS

Homogeneous Models Inhomogeneous Models
(27.12 MHz) (27.12 MHz)
180 760* 1132 180 626
Cell Cell Cell Cell Cell
Whole body
Average
SAR .0105 L0139 0161 L0134 .0207
Normalized Regional SARs = Regional SAR
Whole Body SAR
Head .54 .79 .69 .65 .35
Neck 1.68 2.94 2.56 1.53 1.68
Upper Arm 11 .07 .05 .12 .06
Lower Arm .14 .10 .08 .19 .11
Upper Torso 47 .76 .66 47 .43
Mid Torso .58 .89 .79 43 W4
Lower Torso .70 .68 .79 .66 .71
Thigh 1.75 1.48 1.51 1.54 2.58
Calf 3.44 2.78 2.85 3.30 3.38

Note: This model was not evenly subdivided. The cells in and above the
mid-torso region were substantially smaller than those used in the lower
torso and in the legs.

models with 10* or more cells, they are obviously unsolvable with
the moment-method approach that has been used to date.

2) As expected, the use of a larger number of cells helps to
define the “hot spots” somewhat more sharply. Larger normal-
ized SAR’s are, for example, obtained for the neck region for
models with a larger number of cells.

3) No trends can be delineated for the results of model with
finer discretization for parts of the body. The normalized regional
SAR’s depend upon how much of the body was subdivided and
the frequency of the incident field.

VI. CONCLUSIONS

A fundamental limitation of the moment-method is that inver-
sion of full or nearly-full matrices is involved. Only a limited
number of cells can, therefore, be used if the computation time is
to be kept within affordable limits. The method does allow the
use of realistic inhomogeneous models and is the only method
available at the present time for calculations of SAR distribu-
tions. The development of the BAM outlined in this paper has
allowed us to go up to 626- to 1132-cell models—a number
unthinkable in the past. This has also highlighted the need for
still finer discretization (smaller cells sizes A /A, < 0.1), which is
clearly impractical with any size computer presently available if
the moment-method approach using pulse-function-basis is to be
used. It should be mentioned here that the computation time goes
up roughly as N>, The use of more complicated basis functions
may reduce the number of cells necessary for the convergence of
the solution, but, on the other hand, may also add to the
computation time because of the complexity of the calculations.
Development of numerically efficient procedures such as FFT,
with computation times proportional to Nlog,(N) per iteration,
may allow use of 10410 inhomogeneous cells permitting thereby
a detailed modeling of the crucial regions of the body such as the
eyes, the gonads, etc. Some pilot studies recently completed in
our laboratory have demonstrated the feasibility of this approach.
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Comments on “Capabilities of Multi-Applicator
Systems for Focused Hyperthermia”

PAUL F. TURNER

In the above paper!, the author has incorrectly assumed that
aperture size must be limited to a lateral dimension of not less
than one wavelength in fat tissue in order to prevent excessive
heating of superficial fat. The reference cited to support this
conclusion [1] did not make such a generalization, but rather
provided an example which implied this restriction at a particular
frequency and with a certain aperture size. In actuality, however,
focussed co-phased applicators are useful across a much broader
range than Knoechel has suggested.

The work to which he has referred stems in turn from that of
Guy and Lehmann [2]; this material indicates that an optimum
frequency exists at which a single aperture produces minimum
surface fat heating and maximal penetration depth through a
fat /muscle boundary. Guy’s study shows that only small changes
in fat heating at lower frequencies occur through near-field
effects.

The use of a dielectric (i.e., water-filled) bolus was alluded to
by Knoechel, but he mentioned nothing of the effects of this
device. In fact, such a bolus displaces the aperture near fields
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from the tissue surface and at the same time acts as a dielectric
wavegnide to maintain energy confinement within the bolus. Fat
heating can therefore be reduced at lower frequencies and with
smaller apertures. The primary advantage of using lower frequen-

. cies in a co-phase applicator atray is that this produces a larger

central hot zone because of the longer wavelengths used.

A rather dramatic example of the use of synchronously arrayed
radiators is the Annular Phased Array (APA), developed at BSD
Medical Corporation, which is composed of 16 apertures sur-
rounding the patient in an annular fashion. I first reported on
this device and its test results in June of 1980 [3]; these initial
tests demonstrated that a large central heating zone was created
in muscle phantom models of the human trunk and in large pigs.
No selective fat heating has been observed in subsequent animal
experiments or in any of the more than 430 patient treatments to
date.

A water bolus is placed between the apertures of the APA and
the tissue in order to reduce near-field effects by lowering the
medium impedance at the aperture and displacing the tissue from
the near fields. This allows broad-band operation of the Annular
Phased Array at frequencies of 50~110 MHz. Each of the 16
apertures of this device has a minimal size of 23 cm, which is
one-eighth of a wavelength in fat at 50 MHz. The wavelength in
muscle at 50 MHz is 47 cm [1]; thus, the central co-phase
reinforcement zone is on the order of 24 cm wide.

Knoechel, however, in his article, did not clearly state the
necessity for aligning the electric fields of co-phased apertures in
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